"Astronaut Training" with Rideable Hoverboards: An Educational & Memorable Activity For All Ages

<image>

James Flaten <flate001@umn.edu> NASA's MN Space Grant Consortium Aerospace Engineering and Mechanics U of MN - Twin Cities

The case for rideable hoverboards

- Kinesthetic, engaging, educational
- Suitable for all ages
- Useful in many contexts
 - Physics curricular
 - Newton's Laws of Motion (six of them!), and more
 - Space connections
 - "Astronaut training," spacecraft control, and more
 - Outreach

Take-away: Every Space Grant (& physics teacher) (& ...) could benefit from having a couple rideable hoverboards.

Rideable Hoverboard parts

- 4-foot diameter hoverboard, with skirt and bumper
 - Note for some demonstrations you will want <u>TWO</u>
- Air source (leaf blower or shop-vac (with extension cord))
- Seat (optional, but strongly recommended no standing!)

My favorite accessories

- Bungee cords (on meter sticks)
- Push/pull rod (8-foot 1-inch diameter pvc pipe)
- Torque ladder/bar (with socket wrench or vise grips)
- Spinning bicycle wheel (gyroscope)
- CO₂ fire extinguisher (modified to be a thruster)

Hovercraft		
ME-9838	\$549	
Items(s) Selected:	Qty	
Hovercraft (ME-983	8)	
	1 @	
Total:	\$549	
U.S. Educator Pricin	g Shown	
Add Item(s) to	Cart	
Important: See Bu	ying	
Course and the market of the second second		
Guide for Required &		

An expensive but robust commercial solution: Pasco.com (board & blower only)

PASC	0		Search	XQ	Log in 🙋
Subjects -	Products-	Support-	Training & Resources -	Downloads - At	oout Us≁
	TOP A OVER	/IEW			
Cord	less Air	Source	SE-8806	Great Demo	1
				Cordless A SE-8806	ir Source \$139
				Items(s) Selec	ted: Qty.
				Cordless Air Source (SE-8	
			BLACKS BLACKS BLACKS		1 8
		1-	CORDLESS	18v Total:	\$139
		- 1			r Pricing Shown h(s) to Cart

I much-prefer a plug-in blower, like a wet-dry shop vac – just make sure it has a "blow" mode. Here is one from Home Depot.

For about half the cost of one hoverboard from Pasco, you can make two home-built hoverboards and two seats (and also buy two blowers!), if you have the time.

Some Lesson/Demonstration Ideas

- Differences to expect when in outer space / Earth orbit
 - Misconception: "No gravity in outer space." It is free-fall!
- Ways astronauts prepare to live and work in outer space
 - Hovercraft can simulate no-friction aspect of free-fall
- Newton's Laws of Motions (3 "standard" & 3 "rotation")
- Astronaut applications
 - Torque about a vertical axis (building in space)
 - Spinning wheel for steering (orientation/attitude control)
 - CO₂ "cold gas" rocket thruster (propulsion)
- Astronaut challenges like "go repair something over there"

Some demonstration videos posted at http://www.aem.umn.edu/people/faculty/flaten/MnSGC_video_clips_hoverboards/

Challenges

- Requires a hard floor (not carpet!) and some open space
- Noisy (might disturb people in nearby classrooms)
- Almost too popular (avoid battery-powered air source)
- CO₂ fire extinguisher (modified, consumable expense)

Safety

- Slippery (hold while mounting/dismounting; sit down)
- Need tenders (don't over-run cord, start/stop gently)
- Spinning wheel: practice, don't touch skin, hair, jewelry
- CO₂ thruster: practice, short bursts, stay clear of exhaust

"Astronaut Training" with Rideable Hoverboards: An Educational & Memorable Activity For All Ages

<image>

James Flaten <flate001@umn.edu> NASA's MN Space Grant Consortium Aerospace Engineering and Mechanics U of MN - Twin Cities

